PSVM: Parallelizing Support Vector Machines on Distributed Computers
نویسندگان
چکیده
Support Vector Machines (SVMs) suffer from a widely recognized scalability problem in both memory use and computational time. To improve scalability, we have developed a parallel SVM algorithm (PSVM), which reduces memory use through performing a row-based, approximate matrix factorization, and which loads only essential data to each machine to perform parallel computation. Let n denote the number of training instances, p the reduced matrix dimension after factorization (p is significantly smaller than n), and m the number of machines. PSVM reduces the memory requirement from O(n2) to O(np/m), and improves computation time to O(np2/m). Empirical study shows PSVM to be effective. PSVM Open Source is available for download at http://code.google.com/p/psvm/.
منابع مشابه
Reliability assessment using probabilistic support vector machines
This paper presents a methodology to calculate probabilities of failure using Probabilistic Support Vector Machines (PSVMs). Support Vector Machines (SVMs) have recently gained attention for reliability assessment because of several inherent advantages. Specifically, SVMs allow one to construct explicitly the boundary of a failure domain. In addition, they provide a technical solution for probl...
متن کاملLocalized Support Vector Machine and Its Efficient Algorithm
Nonlinear Support Vector Machines employ sophisticated kernel functions to classify data sets with complex decision surfaces. Determining the right parameters of such functions is not only computationally expensive, the resulting models are also susceptible to overfitting due to their large VC dimensions. Instead of fitting a nonlinear model, this paper presents a framework called Localized Sup...
متن کاملCyber Attack Detection and Classification Using Parallel Support Vector Machine
Cyber attack is becoming a critical issue of organizational information systems. A number of cyber attack detection and classification methods have been introduced with different levels of success that is used as a countermeasure to preserve data integrity and system availability from attacks. The classification of attacks against computer network is becoming a harder problem to solve in the fi...
متن کاملAlgorithmes rapides de boosting de SVM
Résumé. Les algorithmes de boosting de Newton Support Vector Machine (NSVM), Proximal Support Vector Machine (PSVM) et Least-Squares Support Vector Machine (LS-SVM) que nous présentons visent à la classification de très grands ensembles de données sur des machines standard. Nous présentons une extension des algorithmes de NSVM, PSVM et LS-SVM, pour construire des algorithmes de boosting. A cett...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کامل